
$ git branch

$ git status

$ git fetch

$ git logs

GIT
CHEAT
SHEET



SETUP & INIT
Configuring user information,
initializing and cloning repositories.

STAGE & SNAPSHOT
Working with snapshots and the
Git staging area.

$ git init

 $ git clone [url]

$ git status

$ git add [file]

01

git init

Retrieve an entire repository from
a hosted location via URL.

Initialize an existing directory as a
Git repository.

Add a file as it looks now to your
next commit (stage).

Show modified files in working directory,
staged for your next commit.

Git Cheatsheet

</>

Local Copy of the
Repository

Remote
Repository at [URL]

</>

Local Copy of the
Repository

git clone [URL] git clone [URL]

Working
Directory

Staging
Area

git add [file]

(Stage)

Normal Directory Git Repository

Git Status

Working
Directory

Staged
Snapshot

Unstaged
Snapshot



$ git reset [file]

$ git branch

$ git diff

git diff --staged

$ git commit -m “[descriptive message]”

02

Diff of what is staged but not
yet commited.

Unstage a file while retaining the
changes in working directory.

Diff of what is changed but not staged

Commit your staged content as a
new commit snapshot.

List your branches. A * will appear next to
the currently active branch.

Git Cheatsheet

Working
Directory

Staging
Area

(Stage)
git add [file]

git reset [file]
(Unstage)

Working
Directory

Staging
Area

git diff

=

Staging
Area git diff --staged Commit

History

Branch 1

Branch 2

*Main Branch

=
HEAD

Working
Directory

git add

Staging
Area

git commit

Git Repository
(Commit History)

BRANCH & MERGE
Isolating work in branches, changing
context, and integrating changes.



$ git branch [branch-name]

$ git log

$ git merge [branch]

03

Create a new branch at the
current commit.

Switch to another branch and check it
out into your working directory.

Add a file as it looks now to your
next commit (stage).

Merge the specified branchʼs history
into the current one.

Git Cheatsheet

$ git checkout

[branch-name]

Branch_1

*Branch_1

Branch 2

git checkout Branch_1

Main Branch

*Main Branch

Main Branch

Branch 2

New Feature

Main Branch

git branch
[branch-name] git merge

commit fb555

commit 3ecd3

commit 21a67

git log

commit 21a67
Author : xyz
Date: Mon May 16 16:03:16 2022
Commit Message

commit fb555
Author : ABC
Date: Tue May 17 09:05:45 2022
Commit Message

commit 3ecd3
Author : XYZ
Date: Sun May 22 19:45:34 2022
Commit Message

Git Repository

Git Logs



INSPECT & COMPARE
Configuring user information,
initializing and cloning repositories.

$ git log branchB..branchA

 $ git log --follow [file] $ git show [SHA]

$ git diff branchB...branchA

04

Show the commits on branchA that
are not on branchB.

Show the commits that changed file,
even across renames.

Show any object in Git in
human-readable format.

Show the diff of what is in branchA
that is not in branchB.

Git Cheatsheet

commit 181a9

commit c7eaf

git log
branchB

...
branchA

commit 181a9
Author : XYZ
Date: Mon May 16 16:03:16 2022
Commit Message

commit c7eaf
Author : ABC
Date: Tue May 17 09:05:45 2022
Commit Message

branchB

Git Repository

branchA

Git Logs

git d
iff branchB...b

ranchA

commit 715c3

branchB

branchA

git show 715c3

commit 715c3
Author : XYZ
Date: Mon May 16 16:03:16 2022
Commit Message

File1
File1 Changes
File2
File2 Changes
...



TRACKING PATH CHANGES
Versioning file removes and
path changes.

IGNORING PATTERNS
Preventing unintentional staging
or commiting of files.

$ git rm [file]

$ git log --stat -M

05

Change an existing file path and
stage the move.

Delete the file from the project and
stage the removal for commit.

System wide ignore pattern for all
local repositories

Show all commit logs with indication
of any paths that moved.

logs/
*.notes
pattern*/

Save a file with desired patterns as
.gitignore with either direct string matches
or wildcard globs.

Git Cheatsheet

+

Git Repository

(Stage the removal)

git rm [file]

$ git mv [existing-path] [new-path]

+
(Stage the removal)

Git Repository

git mv [file]

logs/
* .notes
pattern*/

.gitignore

$ git config --global core.excludesfile [file]



$ git fetch [alias] $ git push [alias] [branch]

$ git merge [alias]/[branch]

06

Add a git URL as an alias.

Fetch down all the branches from
that Git remote.

Transmit local branch commits to
the remote repository branch.

Merge a remote branch into your current
branch to bring it up to date.

Git Cheatsheet

SHARE & UPDATE
Retrieving updates from another
repository and updating local repos.

$ git remote add [alias] [url]

Remote Git
Repository at [URL]

Local Git
Repository

Local Repository

Remote Repository

git remote add
[alias] [URL]

Local Repository

Remote Repository

after merge

Local Repository

Remote Repository

remote/main

local/main

new merge commit

git fetch origin/main
after merge

merge

git push

git merge origin/main

Main

Main

origin/main

Main

Main

origin/main

new merge
commit



$ git pull $ git reset --hard [commit]
Clear staging area, rewrite working
tree from specified commit.

07

Apply any commits of the current
branch ahead of specified one.

Fetch and merge any commits from
the tracking remote branch.

Save modified and staged changes.

Git Cheatsheet

Local Repository

git rebase

local/main

remote origin/main

new merge
commit

after merge

git pull

REWRITE HISTORY
Rewriting branches, updating
commits and clearing history.

TEMPORARY COMMITS
Temporarily store modified, tracked
files in order to change branches.

$ git rebase [branch] $ git stash

main

Feature

Working Directory
(Unstaged Changes)

git stash

head head

Rewriting Staging Index
& Working Directory

git reset --hard HEAD~1

Staged Changes



$ git stash list

$ git stash drop

08

List stack-order of stashed file changes.

Discard the changes from the top
of the stash stack.

Write working from the top of
the stash stack.

Git Cheatsheet

Working
Directory

git stash

git stash

git stash

git stash list

stash@(0): WIP on master: fd3aab8 done

stash@(1): WIP on master: fd3aab8 done

stash@(2): WIP on master: fd3aab8 done

$ git stash pop

Stash List

git stash drop

(Discard)

Stash List

git stash pop

Working
Directory

stash@{3

}

stash@{2

}

stash@{1

}

stash@{0

}

stash@{3}

stash@{3

}

stash@{2

}

stash@{1

}

stash@{0

}

stash@{3}
Apply


